Predicting the Performance of Online Consumer Reviews: A Sentiment Mining Approach
نویسندگان
چکیده
Online consumer reviews (OCR) have helped consumers to know about the strengths and weaknesses of different products and find the ones that best suit their needs. This research investigates the predictors of readership and helpfulness of OCR using a sentiment mining approach. Our findings show that reviews with higher levels of positive sentiment in the title receive more readerships. Sentimental reviews with neutral polarity in the text are also perceived to be more helpful. The length and longevity of a review positively influence both its readership and helpfulness. Our findings suggest that the current methods used for sorting OCR may bias both their readership and helpfulness. This study can be used by online vendors to develop scalable automated systems for sorting and classification of OCR which will benefit both vendors and consumers.
منابع مشابه
Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملMultiple Aspect Ranking Using Sentiment Classification for Data Mining
Numerous consumer reviews of products are now available on the Internet. Consumer reviews contain rich and valuable knowledge for both firms and users. However, the reviews are often disorganized, leading to difficulties in information navigation and knowledge acquisition. This article proposes a product aspect ranking framework, which automatically identifies the important aspects of products ...
متن کاملAutomatic Domain Ontology Extraction for Context-Sensitive Opinion Mining
Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform contextsensitive sentime...
متن کاملA Rule-Based Approach For Effective Sentiment Analysis
The success of Web 2.0 applications has made online social media websites tremendous assets for supporting critical business intelligence applications. The knowledge gained from social media can potentially lead to the development of novel services that are better tailored to users’ needs and at the same time meet the objectives of businesses offering them. Online consumer reviews are one of th...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 81 شماره
صفحات -
تاریخ انتشار 2014